

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 3349–3352

Tetrahedron Letters

Expeditious synthesis of the aromatic spiroketal skeleton using hetero-Diels–Alder cycloaddition

Guanglian Zhou, Deping Zheng, Shijun Da, Zhixiang Xie* and Ying Li*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China

Received 18 January 2006; revised 14 March 2006; accepted 15 March 2006

Abstract—The hetero-Diels–Alder reactions of enolic ethers generated from methylenation of various esters are described, which allow for the rapid synthesis of various substituted [6,6] aromatic spiroketal skeletons. © 2006 Elsevier Ltd. All rights reserved.

Aliphatic spiroketals have attracted much attention, and there are many examples for the synthesis of the nonanomeric structures.[1](#page-2-0) However, the aromatic spiroketal skeletons, which are found in a broad range of bioactive natural products such as heliquinomycin (1) and its analogues (Fig. 1),^{[2](#page-2-0)} remain a formidable challenge despite the progress, which has been achieved in this area in the recent years.[3](#page-2-0) Our interest in the structures of diverse aromatic spiroketal skeletons promoted us to consider methods for expeditious synthesis of these molecules. The synthesis of aliphatic spiroketals using hetero-Diels–Alder reactions have been explored by Pzul in 195[4](#page-3-0). 4 o -Quinone methides are known to react with a range of dienophiles to perform $[4+2]$ cycloaddition.^{[5](#page-3-0)} To our knowledge, the use of hetero-Diels–Alder reaction for the synthesis of the aromatic spiroketal skeletons such as A has not previously been reported ([Fig. 2](#page-1-0)). We envisioned that the aromatic spiroketal skeleton A could arise from a cycloaddition between the o -quinone methides **B** and the enolic ethers **C** or D. In this letter, we wish to report our results on the rapid synthesis of various substituted [6,6] aromatic spiroketal skeletons by using hetero-Diels–Alder reactions.

o-Quinone methides are extremely reactive transient species, undergoing dimerization or trimerization in the ab-sence of a nucleophile or electron-rich alkene.^{[6](#page-3-0)} There are many strategies, which have been established in order to generate o -quinone methides in situ in the past years.^{[7](#page-3-0)}

Because of our experience with o -quinone methide reactivity, we firstly examined their capacity of reacting with commercially available ethoxyethene (8). Initially, the o-quinone methides for the reaction were prepared on the basis of the simple protocol described by Bolon.7a As shown in [Figure 3](#page-1-0), to generate the o -quinone methide from o-cresol (7), oxidation reagent Ag₂O was added, then ethoxyethene was mixed at room temperature, but no product was found. Using 2-methylbenzene-1,4 diol (10) as o-quinone methide precursor, 2-methylcyclohexa-2,5-diene-1,4-dione (11) was obtained in 80% yield.

Very recently, a new and efficient method for o-quinone methides intermediate generation from o-methyleneacetoxy-phenols has been developed and applied by Baldwin.^{5h} Based on this methodology, o -quinone methides precursor were prepared. The syntheses of o-quinone methides precursor was started from commercially available *o*-hydroxybenzaldehyde (12 or 13). The corresponding aldehydes 14 and 15 were readily prepared by acylation of o -hydroxybenzaldehyde (12 or 13) with Ac_2O in the presence of K_2CO_3 in ethyl ether. The conversion of the aldehyde (14 or 15) to the o-quinone methides precursor (16 or 17) was realized by using borane–DMS complex reduction [\(Scheme 1\)](#page-1-0).

o-Quinone methides generated in the presence of the ethoxyethene lead to cycloaddition, adduct 18 ([Table 1\)](#page-1-0), which thus verifies the Baldwin's methodology. After optimization of the reaction time and temperature cycloaddition adduct 18 was obtained in 60% yield.

Enolic ethers D for the reaction can be readily prepared on the basis of the protocol described in the literature.^{[8](#page-3-0)}

^{*} Corresponding authors. Tel.: +86 0931 8912526 (Z.X.); tel.: +86 0931 8912788; fax: +86 0931 8913103 (Y.L.); e-mail addresses: [xiezx@lzu.edu.cn;](mailto:xiezx@lzu.edu.cn) liying@lzu.edu.cn

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.03.092

Figure 1. Examples of biologically active aromatic spiroketal.

Figure 2. Proposed construction of the aromatic spiroketal skeletons A by cycloaddition of the o-quinone methides B and the enolic ethers C or D.

Figure 3. Using Bolon's protocol to generate the o -quinone methide.

Scheme 1. Preparation of o -quinone methides precursor.

Our studies then focused on the hetero-Diels–Alder cycloaddition between the o -quinone methides **B** and the enolic ethers D. As shown in [Table 2](#page-2-0), entry 1, in

Table 1. Cycloaddition of 2-acetoxymethyl-5-acetoxyphenol with ethoxyethene

AcC	OAc OH 17	2.5 eq, \oslash OEt AcC PhH, 110 °C, 16 h	OEt 18
Entry	Time (h)	Temperature $(^{\circ}C)$	Yield $(\%)$
	10	110	52
2	16	110	60
3	24	110	60
	24	130	60

the case where no catalyst was used, the o -quinone methides precursor 17 and the enolic ethers 19 gave spiroketal product 24a as a single regioisomer in 59% yield; the addition of $TiCl₄$ as catalyst improved the yield to 71%. Variation of enolic ethers D was carried out. Results (entries 2–5) suggest that the yield of spiroketal product was not significantly affected by the enolic ethers.^{[9](#page-3-0)} Using compound 16 as the o -quinone methides precursor, the yield of spiroketal products was slightly decreased (entries 6 and 7).

In order to further explore the versatility of this cycloaddition, we tried to synthesize various substituted [5,6] aromatic spiroketal skeletons by hetero-Diels– Alder reactions. The synthesis of enolic ethers such as C was carried out using Yan's methodology.[8](#page-3-0) Unfortunately, methylenation with benzofuran- $2(3H)$ -one (25) under the standard conditions gave an olefin isomerization product 27, which is believed to be derived from the normal product 26 [\(Scheme 2](#page-2-0)). Now the synthesis of the enolic ethers such as 26 is under process.

In conclusion, the hetero-Diels–Alder reactions of enolic ethers generated from methylenation of various esters are described, which allow for the rapid synthesis of various substituted [6,6] aromatic spiroketal skeletons. These heterocyclic compounds may be prove to be medically interesting molecules in the future.

Table 2. Cycloaddition of the *o*-quinone methides precursor C with enolic ethers D

${\rm Entry}$	o -Quinone methides precursor	Enolic ethers	Spiroketal product	Yield $(\%)^a$
$\mathbf{1}$	$\bf 17$	Ô 19	AcO O O 24a	$59^{\rm b}$ 71°
$\sqrt{2}$	$\bf 17$	Br- 20°	AcO -Br \mathbf{O} O 24 _b	$\sqrt{48}$
\mathfrak{Z}	$\bf 17$	O 21	AcO \circ \circ 24c	$58^{\rm b}$ 70°
$\overline{4}$	$\bf 17$	MeO `Oʻ 22	OMe AcO \circ \circ $\overline{24d}$	$60^{\rm b}\over 73^{\rm c}$
$\sqrt{5}$	$\bf 17$	Br- MeO [®] O, 23	OMe AcO ·Br \circ o 24e	59
6	$16\,$	Ô 19	O Ω 24f	$51\,$
$\boldsymbol{7}$	$16\,$	Br- MeO `Oʻ 23	OMe -Br \circ \circ 24g	$47\,$

^a Yields were calculated after column chromatography.

b Yield obtained without any catalyst.

 \textdegree Yield obtained by the catalysis of TiCl₄.

Scheme 2. Preparation of the enolic ethers such as C.

Acknowledgements

We are grateful for the financial support of the National Natural Science Foundation of China (Grant Nos. 20272020 and 20021001).

References and notes

- 1. Aho, J. E.; Pihko, P. M.; Rissa, T. K. Chem. Rev. 2005, 105, 4406–4440.
- 2. (a) Brockmann, H.; Lenk, W.; Schwantje, G.; Zeeck, A. Tetrahedron Lett. 1966, 22, 3525–3530; (b) Brockmann, H.; Lenk, W.; Schwantje, G.; Zeeck, A. Chem. Ber. 1969, 102, 126–151; (c) Brockmann, H.; Zeeck, A. Chem. Ber. 1970, 103, 1709–1726; (d) Coronelli, C.; Pagani, H.; Bardone, M. R.; Lancini, G. C. J. Antibiot. 1974, 27, 161–168; (e) Bardone, M. R.; Martinelli, E.; Zerilli, L. F.; Cornelli, C. Tetrahedron 1974, 30, 2747–2754; (f) Chino, M.; Nishikawa, K.; Umekia, M.; Hayashi, C.; Yamazaki, T.; Tsuchida, T.; Sawa, T.; Hamada, M.; Takeuchi, T. J. Antibiot. 1996, 49, 752–757; (g) Chino, M.; Nishikawa, K.; Tsuchida, T.; Sawa, R.; Nakamura, H.; Nakamura, K. T.; Muraoka, Y.; Ikeda, D.; Naganawa, H.; Sawa, T.; Takeuchi, T. J. Antibiot. 1997, 50, 143–177; (h) Stroshane, R. M.; Chan, J. A.; Rubalcaba, E. A.; Garetson, A. L.; Aszalos, A. A.; Roller, P. P. J. Antibiot. 1979, 32, 197–204.
- 3. (a) Qin, D.; Ren, R. X.; Siu, T.; Zheng, C.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4709–4713; (b) Siu, T.; Qin, D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4713–4716; (c) Capecchi, T.; de Koning, C. B.; Michael, J. P. Tetrahedron Lett. 1998, 39, 5429–5432; (d) Capecchi, T.; de Koning, C. B.; Michael, J. P. J. Chem. Soc., Perkin Trans. 1 2000, 2681–2688; (e) Tsang, K. Y.; Brimble, M. A.; Bremner, J. B. Org. Lett. 2003, 5, 4425–4427.
- 4. Pzul, R.; Tchelitcheff, S. Bull. Soc. Chim. Fr. 1954, 21, 672– 678.
- 5. (a) Yato, M.; Ohwada, T.; Shudo, K. J. Am. Chem. Soc. 1990, 112, 5341–5342; (b) Diao, L.; Yang, C.; Wan, P. J. Am. Chem. Soc. 1995, 117, 5369–5370; (c) Chambers, J. D.; Crawford, J.; Williams, H. W. R.; Dufresne, C.; Scheigetz, J.; Bernstein, M. A.; Lau, C. K. Can. J. Chem. 1992, 70, 1717–1732; (d) Inoue, T.; Inoue, S.; Sato, K. Bull. Chem. Soc. Jpn. 1990, 63, 1062–1068; (e) Jones, R. M.; Selenski, C.; Pettus, T. R. R. J. Org. Chem. 2002, 67, 6911–6915; (f) Selenski, C.; Pettus, T. R. R. J. Org. Chem. 2004, 69, 9196– 9203; (g) Selenski, C.; Mejorado, L.; Pettus, T. R. R. Synlett 2004, 6, 1101–1103; (h) Rodriquez, R.; Adlington, R. M.; Moses, J. E.; Cowley, A.; Baldwin, J. E. Org. Lett. 2004, 6, 3617–3619; (i) Lindsey, C. C.; Pettus, T. R. R. Tetrahedron Lett. 2006, 47, 201–204.
- 6. Turner, A. B. Quart. Rev. 1964, 18, 347–360.
- 7. (a) Bolon, D. A. J. Org. Chem. 1970, 35, 3666–3670; (b) Katada, T.; Eguchi, S.; Esaki, T.; Sasaki, T. J. Chem. Soc., Perkin Trans. 1 1984, 2649–2653; (c) Pettigrew, J. D.; Bexrud, J. A.; Freeman, R. P.; Wilson, P. D. Heterocycles 2004, 62, 445–452; (d) Chiba, K.; Hirano, T.; Kitano, Y.; Tada, M. Chem. Commun. 1999, 691–692; (e) Loubinoux,

B.; Miazim-bakana, J.; Gerardin, P. Tetrahedron Lett. 1989, 30, 1939–1942; (f) Van De Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367–5407.

- 8. Yan, T.-H.; Chien, C.-T.; Tsai, C.-C.; Lin, K.-W.; Wu, Y.-H. Org. Lett. 2004, 6, 4965–4967.
- 9. Typical procedure for the synthesis of the aromatic spiroketals: In a sealed tube was stirred 6-bromo-3,4-dihydro-2 methylene-2H-benzopyran (112.0 mg, 0.50 mmol) with 2-acetoxymethyl-5-acetoxyphenol (17) $(112.0$ mg, 0.50 mmol) in benzene (1.0 mL) at 110° C under argon for 28 h. After evaporation of benzene under reduced pressure, the colourless oil obtained was purified by flash silica gel chromatography (16:1 30–60 P.E.:EtOAc) to give a white solid (90.1 mg, 48%) of spiroacetal (24b). Mp 123-124 °C; ¹H NMR (300 MHz, CDCl₃, δ ppm): 7.25 (d, 1H), 7.09– 7.17 (m, 2H), 6.59–6.65 (m, 2H), 6.49 (d, $J = 2.1$ Hz, 1H), 3.17–3.23 (m, 2H), 2.68–2.76 (m, 2H), 2.24 (s, 3H), 2.17– 2.21 (m, 2H), 1.90–2.00 (m, 2H). 13C NMR (75 MHz, CDCl3, d ppm): 20.4, 20.7, 21.1, 30.7, 30.9, 96.2, 110.4, 113.0, 114.2, 118.9, 119.7, 124.3, 129.5, 130.0, 131.5, 149.5, 151.1, 152.4, 169.6. MS (ESI) FW = 388.03, $m/z = 388.00$. HRMS calcd for $C_{19}H_{17}BrO_4$ (M+NH⁺) 406.0648, found 406.0650.